
tomcatmanager Documentation
Release 1.0.0

Jared Crapo

Feb 01, 2020

Contents

1 What Can It Do? 3

2 System Requirements 5

3 Table of Contents 7
3.1 Installation . 7
3.2 Configure Tomcat . 7
3.3 Interactive Use . 8
3.4 Command Line . 15
3.5 Use from Python . 18
3.6 API Documentation . 26
3.7 Contributing . 40
3.8 Changelog . 45

Python Module Index 51

Index 53

i

ii

tomcatmanager Documentation, Release 1.0.0

tomcatmanager is a command line tool and python library for managing a Tomcat server.

Contents 1

tomcatmanager Documentation, Release 1.0.0

2 Contents

CHAPTER 1

What Can It Do?

This package installs a command line utility called tomcat-manager. It’s easily scriptable using your favorite
shell:

$ tomcat-manager --user=ace --password=newenglandclamchowder \
http://localhost:8080/manager deploy local sample.war /sampleapp
$ echo $?
0

There is also an interactive mode:

$ tomcat-manager
tomcat-manager>connect http://localhost:8080/manager ace newenglandclamchowder
--connected to http://localhost:8080/manager as ace
tomcat-manager>list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/sampleapp stopped 0 sampleapp##9
/sampleapp running 0 sampleapp##8
/host-manager running 0 /usr/share/tomcat8-admin/host-manage
/manager running 0 /usr/share/tomcat8-admin/manager

And for the ultimate in flexibility, you can use the python package directly:

>>> import tomcatmanager as tm
>>> tomcat = tm.TomcatManager()
>>> r = tomcat.connect(url='http://localhost:8080/manager',
... user='ace', password='newenglandclamchowder')
>>> tomcat.is_connected
True
>>> r = tomcat.stop('/someapp')
>>> r.status_code == tm.status_codes.ok
False
>>> r.status_message
'No context exists named /someapp'

3

tomcatmanager Documentation, Release 1.0.0

4 Chapter 1. What Can It Do?

CHAPTER 2

System Requirements

You’ll need Python 3.5 or higher on macOS, Windows, or Linux.

The following Tomcat versions are supported:

• 7.0.x

• 8.0.x

• 8.5.x

• 9.0.x

5

tomcatmanager Documentation, Release 1.0.0

6 Chapter 2. System Requirements

CHAPTER 3

Table of Contents

3.1 Installation

You need Python 3.5 or higher. Install using pip:

pip install tomcatmanager

Works on Windows, macOS, and Linux.

Now what?

First you will need to Configure Tomcat.

If you are in a hurry to get started with the command line tool, type:

tomcat-manager -h

Or, you can start writing your own python code which imports the package.

3.2 Configure Tomcat

3.2.1 Supported Tomcat Versions

The following Tomcat versions are supported:

• 7.0.x

• 8.0.x

• 8.5.x

• 9.0.x

The operating system and Java Virtual Machine don’t matter as long as Tomcat runs on it.

7

tomcatmanager Documentation, Release 1.0.0

3.2.2 Authentication

This library and associated tools do their work via the Tomcat Manager web application included in the Tomcat
distribution.

You will need the URL where the Tomcat Manager application is available. You can use the URL that points directly
to the container, or the URL of a proxy like nginx or Apache HTTP Server you have deployed in front of Tomcat. TLS
is recommended, but it works without if you must.

You will also need to configure authentication for a user, and grant that user permission to access the Tomcat Manager
application. The full details of this procedure can be found in the Tomcat Manager Howto. A short summary is
included here.

Configure a user in tomcat-users.xml and grant that user the manager-script role. The username and
password can be anything of your choosing. Here’s how to configure the user we will use as an example throughout
this documentation:

<tomcat-users>
...
<role rolename="manager-script"/>
<user username="ace" password="newenglandclamchowder" roles="manager-script"/>
...

</tomcat-users>

3.3 Interactive Use

After installation, you will have a new tool called tomcat-manager. Run this with no command line arguments to
invoke an interactive, line-oriented command interpreter:

$ tomcat-manager
tomcat-manager> connect http://localhost:8080/manager admin newenglandclamchowder
--connected to http://localhost:8080/manager as ace
tomcat-manager> list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 14 /usr/share/tomcat7-admin/manager
/host-manager running 0 /usr/share/tomcat7-admin/host-manager
tomcat-manager> exit

Use the exit or quit command to exit the interpreter and return to your operating system shell.

3.3.1 Built In Help

The interactive shell has a built-in list of all available commands:

tomcat-manager> help
tomcat-manager is a command line tool for managing a Tomcat server

Connecting to a Tomcat server
==
connect Connect to a tomcat manager instance.
which Show the url of the tomcat server you are connected to.

(continues on next page)

8 Chapter 3. Table of Contents

https://tomcat.apache.org/tomcat-9.0-doc/manager-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/manager-howto.html#Configuring_Manager_Application_Access

tomcatmanager Documentation, Release 1.0.0

(continued from previous page)

Managing applications
==
list Show all installed applications.
deploy local Deploy a local war file to the tomcat server.
deploy server Deploy a war file to the tomcat server.
deploy context Deploy a context xml file to the tomcat server.
redeploy Undeploy an existing app and deploy a new one in its place.
undeploy Remove an application at a given path from the tomcat server.
start Start a deployed tomcat application that isn't running.
stop Stop a tomcat application and leave it deployed on the server.
restart Start and stop a tomcat application. Synonym for reload.

reload Synonym for 'restart'.
sessions Show active sessions for a tomcat application.
expire Expire idle sessions.

Server information
==
findleakers Show tomcat applications that leak memory.
resources Show global JNDI resources configured in Tomcat.
serverinfo Show information about the tomcat server.
sslconnectorciphers Show SSL/TLS ciphers configured for each connector.
status Show server status information in xml format.
threaddump Show a jvm thread dump.
vminfo Show diagnostic information about the jvm.

Settings, configuration, and tools
==
config Edit or show the location of the user configuration file.
edit Edit a file in the preferred text editor.
exit_code Show a number indicating the status of the previous command.
history View, run, edit, and save previously entered commands.
py Execute python commands.
pyscript Run a file containing a python script.
set Change program settings.
show Show all settings or a specific setting.

settings Synonym for 'show'.
shell Execute a command in the operating system shell.
shortcuts Show shortcuts for other commands.

Other
==
exit Exit this program.

quit Synonym for 'exit'.
help Show available commands, or help on a specific command.
version Show the version number of this program.
license Show the MIT license.

As well as help for each command:

tomcat-manager> help stop
usage: stop [-h] [-v VERSION] path

Stop a running tomcat application and leave it deployed on the server.

positional arguments:
path The path part of the URL where the application is

deployed.
(continues on next page)

3.3. Interactive Use 9

tomcatmanager Documentation, Release 1.0.0

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-v VERSION, --version VERSION

Optional version string of the application to stop. If
the application was deployed with a version string, it
must be specified in order to stop the application.

This document does not include detailed explanations of every command. It does show how to connect to a Tomcat
server and deploy a war file, since there are quite a few options for both of those commands. For everything else, the
built-in help should be sufficient.

3.3.2 Connect To A Tomcat Server

Before you can do anything to a Tomcat server, you need to enter the connection information, including the url and
the authentication credentials. You can pass the connection information on the command line:

$ tomcat-manager --user=ace http://localhost:8080/manager
Password: {you type your password here}

Or:

$ tomcat-manager --user=ace --password=newenglandclamchowder \
http://localhost:8080/manager

You can also enter this information into the interactive prompt:

$ tomcat-manager
tomcat-manager> connect http://localhost:8080/manager ace newenglandclamchowder

Or:

$ tomcat-manager
tomcat-manager> connect http://localhost:8080/manager ace
Password: {type your password here}

3.3.3 Deploy applications

Tomcat applications are usually packaged as a WAR file, which is really just a zip file with a different extension. The
deploy command sends a WAR file to the Tomcat server and tells it which URL to deploy that application at.

The WAR file can be located in one of two places: some path on the computer that is running Tomcat, or some path
on the computer where the command line tomcat-manager program is running.

If the WAR file is located on the same server as Tomcat, we call that server. If the WAR file is located where
tomcat-manager is running, we call that local. If the file is already on the server, then we have to tell Tomcat
where to go find it. If it’s local, then we have to send the WAR file over the network so Tomcat can deploy it.

For all of these examples, lets assume I have a Tomcat server running far away in a data center somewhere, accessible
at https://www.example.com. I’m running the command line tomcat-manager program on my laptop.
We’ll also assume that we have already connected to the Tomcat server, using one of the methods just described in
Connect To A Tomcat Server.

For our first example, let’s assume we have a WAR file already on our server, in /tmp/fancyapp.war. To deploy
this WAR file to https://www.example.com/fancy:

10 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

tomcat-manager> deploy server /tmp/myfancyapp.war /fancy

Now let’s say I just compiled a WAR file on my laptop for an app called shiny. It’s saved at ~/src/shiny/
dist/shinyv2.0.5.war. I’d like to deploy it to https://www.example.com/shiny:

tomcat-manager> deploy local ~/src/shiny/dist/shiny2.0.5.war /shiny

Sometimes when you deploy a WAR you want to specify additional configuration information. You can do so by using
a context file. The context file must reside on the same server where Tomcat is running.

tomcat-manager> deploy context /tmp/context.xml /sample

This command will deploy the WAR file specified in the docBase attribute of the Context element so it’s available
at https://www.example.com/sample.

Note: When deploying via context files, be aware of the following:

• The path attribute of the Context element is ignored by the Tomcat Server when deploying from a context
file.

• If the Context element specifies a docBase attribute, it will be used even if you specify a war file on the
command line.

3.3.4 Parallel Deployment

Tomcat supports a parallel deployment feature which allows multiple versions of the same WAR to be deployed
simultaneously at the same URL. To utilize this feature, you need to deploy an application with a version string. The
combination of path and version string uniquely identify the application.

Let’s revisit our shiny app. This time we will deploy with a version string:

tomcat-manager>deploy local ~/src/shiny/dist/shiny2.0.5.war /shiny -v v2.0.5
tomcat-manager>list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager
/shiny running 0 shiny##v2.0.5

Later today, I make a bug fix to ‘shiny’, and build version 2.0.6 of the app. Parallel deployment allows me to deploy
two versions of that app at the same path, and Tomcat will migrate users to the new version over time as their sessions
expire in version 2.0.5.

tomcat-manager>deploy local ~/src/shiny/dist/shiny2.0.6.war /shiny -v v2.0.6
tomcat-manager>list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager
/shiny running 12 shiny##v2.0.5
/shiny running 0 shiny##v2.0.6

Once all the sessions have been migrated to version 2.0.6, I can undeploy version 2.0.5:

3.3. Interactive Use 11

https://tomcat.apache.org/tomcat-8.5-doc/config/context.html
https://tomcat.apache.org/tomcat-8.5-doc/config/context.html#Parallel_deployment

tomcatmanager Documentation, Release 1.0.0

tomcat-manager>undeploy /shiny --version v2.0.5
tomcat-manager>list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager
/shiny. running 9 shiny##v2.0.6

The following commands support the -v or --version option, which makes parallel deployment possible:

• deploy

• undeploy

• start

• stop

• reload

• sessions

• expire

3.3.5 Readline Editing

You can edit current or previous commands using standard readline editing keys. If you aren’t familiar with
readline, just know that you can use your arrow keys, home to move to the beginning of the line, end to move to
the end of the line, and delete to forward delete characters.

3.3.6 Command History

Interactive mode keeps a command history, which you can navigate using the up and down arrow keys. and search the
history of your commands with <control>+r.

You can view the list of previously issued commands:

tomcat-manager> history

And run a previous command by string search:

tomcat-manager> history -r undeploy

Or by number:

tomcat-manager> history -r 10

The history command has many other options, including the ability to save commands to a file and load commands
from a file. Use help history to get the details.

3.3.7 Settings

The show or settings (they do exactly the same thing) commands display a list of settings which control the
behavior of tomcat-manager:

12 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

tomcat-manager> show
autorun_on_edit=False # Automatically run files after editing
colors=True # Colorized output (*nix only)
debug=False # Show stack trace for exceptions
echo=False # For piped input, echo command to output
editor=/usr/local/bin/zile # Program used to edit files
locals_in_py=True # Allow access to your application in py via self
prompt='tomcat-manager> ' # The prompt issued to solicit input
quiet=False # Don't print nonessential feedback
status_prefix=-- # String to prepend to all status output
status_to_stdout=False # Status information to stdout instead of stderr
timeout=10 # Seconds to wait for HTTP connections
timing=False # Report execution times

You can change any of these settings using the set command:

tomcat-manager> set prompt='tm> '
tm>

Quotes around values are not required unless they contain spaces or other quotes.

3.3.8 Configuration File

tomcat-manager reads a user configuration file on startup. This file allows you to:

• change settings on startup

• define shortcuts for connecting to Tomcat servers

The location of the configuration file is different depending on your operating system. To see the location of the file:

tomcat-manager> config file
/Users/kotfu/Library/Application Support/tomcat-manager/tomcat-manager.ini

You can edit the file from within tomcat-manager too. Well, it really just launches the editor of your choice, you
know, the one specified in the editor setting. Do that by typing:

tomcat-manager> config edit

This file uses the INI file format. If you create a section called settings, you can set the values of any of the
available settings. My config file contains:

[settings]
prompt='tm> '
debug=True
editor=/usr/local/bin/zile

3.3.9 Server Shortcuts

You can also use the configuration file to set up shortcuts to various Tomcat servers. Define a section named the
shortcut, and then include a property for url, user, and password. Here’s a simple example:

[localhost]
url=http://localhost:8080/manager
user=ace
password=newenglandclamchowder

3.3. Interactive Use 13

tomcatmanager Documentation, Release 1.0.0

With this defined in your configuration file, you can now connect using the name of the shortcut:

tomcat-manager> connect localhost

If you define a user, but omit password, you will be prompted for it when you use the shortcut in the connect
command.

3.3.10 Shell-style Output Redirection

Save the output of the list command to a file:

tomcat-manager> list > /tmp/tomcat-apps.txt

Search the output of the vminfo command:

tomcat-manager> vminfo | grep user.timezone
user.timezone: US/Mountain

Or the particularly useful:

tomcat-manager> threaddump | less

3.3.11 Clipboard Integration

You can copy output to the clipboard by redirecting but not giving a filename:

tomcat-manager> list >

You can also append output to the clipboard using a similar method:

tomcat-manager> serverinfo >>

3.3.12 Run shell commands

Use the shell or ! commands to execute operating system commands (how meta):

tomcat-manager> !ls

Of course tab completion works on shell commands.

3.3.13 Python Interpreter

You can launch a python interpreter:

tomcat-manager> py
Python 3.6.1 (default, Apr 4 2017, 09:40:51)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveTomcatManager)

py <command>: Executes a Python command.
py: Enters interactive Python mode.

(continues on next page)

14 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

(continued from previous page)

End with ``Ctrl-D`` (Unix) / ``Ctrl-Z`` (Windows), ``quit()``, ``exit()``.
Non-python commands can be issued with ``cmd("your command")``.
Run python code from external script files with ``run("script.py")``

>>> self.tomcat
<tomcatmanager.tomcat_manager.TomcatManager object at 0x10f353550>
>>> self.tomcat.is_connected
True
>>> exit()

As you can see, if you have connected to a Tomcat server, then you will have a self.tomcat object available. See
Use from Python for more information about what you can do with this object.

3.4 Command Line

You’ve already read about Interactive Use right? If not, this part will feel kind of hollow.

Say you want to find out how many active sessions there are in the oldest version of our shiny app (told you it would
feel kind of hollow). You could use interactive mode:

$ tomcat-manager
tomcat-manager>connect https://www.example.com/manager ace newenglandclamchowder
--connected to https://www.example.com/manager as ace
tomcat-manager>list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager
/shiny running 17 shiny##v2.0.6
/shiny running 6 shiny##v2.0.5

3.4.1 Using Shell Scripts

If you need to automate a more complex sequence of commands or parse the output, you might choose to use
tomcat-manager from within a shell script:

#!/usr/bin/env bash
#
URL=https://www.example.com/manager
USERID=ace
PASSWD=newenglandclamchowder
COMMAND='list --raw'
TOMCAT="tomcat-manager --quiet --user=$USERID --password=$PASSWD $URL $COMMAND"

get the output of the list into a shell variable
LIST=$($TOMCAT)

if the tomcat command completed successfully
TOMCAT_EXIT=$?
if ["$TOMCAT_EXIT" -eq 0]; then

echo "$LIST" | grep '^/shiny' | awk -F ':' '{ print $4":"$3}' | \
sort | head -1 | awk -F ':' '{ print #2 }'

else
(continues on next page)

3.4. Command Line 15

tomcatmanager Documentation, Release 1.0.0

(continued from previous page)

list has an error message, not the list of tomcat apps
echo -n "$LIST"
exit $TOMCAT_EXIT

fi

Save this script as ~/bin/oldshiners.sh, and then run it:

$ ~/bin/oldshiners.sh
6

This script builds a tomcat-manager command which includes authentication credentials, the url where the Tomcat
Manager web app is deployed, as well as the command from Interactive Use. In this example, we used list as our
command. Any command that works in the interactive mode works on the command line.

Note how we check the exit code in the shell. tomcat-manager knows whether the command to the tomcat server
completed successfully or not, and sets the shell exit code appropriately. The exit codes are:

0 = command completed succesfully
1 = command had an error
2 = incorrect usage
127 = unknown command

3.4.2 Server Shortcuts

You can use Server Shortcuts from the command line with or without commands:

$ tomcat-manager localhost
--connected to http://localhost:8080/manager as ace
tomcat-manager>list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager

Or:

$ tomcat-manager localhost list
--connected to http://localhost:8080/manager as ace
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager

This mechanism allows you to keep all authentication credentials out of your scripts. Simply define shortcut(s) with
credentials for the server(s) you want to manage, and reference the shortcuts in your scripts. Instead of this:

TOMCAT="tomcat-manager --user=$USERID --password=$PASSWD $URL $COMMAND"

you might use this:

TOMCAT="tomcat-manager example $COMMAND"

with the following in your configuration file:

16 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

[example]
url=https://www.example.com
user=ace
password=newenglandclamchowder

3.4.3 Piped Input

tomcat-manager will process lines from standard input as though they were entered at the interactive prompt.
There is no mechanism to check for errors this way, the commands are blindly run until the pipe is closed. The shell
exit code of tomcat-manager will be the exit code of the last command run.

If you want to see what the exit codes are, you can either use $? in your shell, or you can use the interactive command
exit_code ($? works too) to see the result.

If you want more sophisticated error checking, then you should probably write a shell script and invoke
tomcat-manager seperately for each command you want to execute. That will allow you to use the shell script for
checking exit codes, logic branching, looping, etc.

3.4.4 Controlling Output

When using tomcat-manager from the command line, you have fine grained control of what you want included in
the output. As a well-behaved shell program it sends output to stdout and errors to stderr. If you are using bash
or one of the other sh variants, you can easily co-mingle them into a single stream:

$ tomcat-manager localhost list > myapps.txt 2>&1

In addition to redirecting with the shell, there are several command line switches that change what’s included in the
output. These options correspond to Settings you can change in Interactive Use. All of the settings default to False,
but be aware that you may have altered them your Configuration File, which is read on startup.

Option Setting Description
-e, --echo echo Add the command to the output stream.
-q, --quiet quiet Don’t show non-essential feedback.
-s,
--status-to-stdout

status_to_stdout Send status information to stdout instead of stderr.

-d, --debug debug Show detailed exception and stack trace, even if quiet
is True.

Some commands show additional status information during their execution which is not part of the output. If
quiet=True then all status output is suppressed. If quiet=False then status information is sent to stderr.
If status_to_stdout=True then status information is sent to stdout, as long as quiet=False.

Here’s a couple of examples to demonstrate, using a server shortcut of localhost, which we assume gets you
authenticated to a Tomcat Server web application:

These two commands yield the same output, but by different mechanisms: the first one uses the shell to redirect status
messages to the bitbucket, the second one uses the --quiet switch to instruct tomcat-manager to suppress status
messages.

$ tomcat-manager localhost list 2>/dev/null
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT

(continues on next page)

3.4. Command Line 17

tomcatmanager Documentation, Release 1.0.0

(continued from previous page)

/manager running 0 manager
$ tomcat-manager --quiet localhost list 2>/dev/null
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager

If you pipe commands into tomcat-manager instead of providing them as arguments, the --echo command line
switch can be included which will print the prompt and command to the output:

$ echo list | tomcat-manager --echo localhost
--connected to https://home.kotfu.net/manager as ace
tomcat-manager> list
Path Status Sessions Directory
------------------------ ------- -------- ------------------------------------
/ running 0 ROOT
/manager running 0 manager

For most common errors, like failed authorization, connection timeouts, and DNS lookup failures,
tomcat-manager catches the exceptions raised by those errors, and outputs a terse message describing the prob-
lem. For example, if my Tomcat container is not currently running, or if the HTTP request fails for any other reason,
you will see something like this:

$ tm vm list
connection error

If you want all the gory detail, give the --debug command line switch or set debug=True. Then you’ll see
something like this (stack trace truncated with ‘. . . ’):

$ tm --debug vm list
Traceback (most recent call last):

File "/Users/kotfu/.pyenv/versions/3.6.2/envs/tomcatmanager-3.6/lib/python3.6/site-
→˓packages/urllib3/connection.py", line 141, in _new_conn

(self.host, self.port), self.timeout, **extra_kw)
File "/Users/kotfu/.pyenv/versions/3.6.2/envs/tomcatmanager-3.6/lib/python3.6/site-

→˓packages/urllib3/util/connection.py", line 83, in create_connection
raise err

File "/Users/kotfu/.pyenv/versions/3.6.2/envs/tomcatmanager-3.6/lib/python3.6/site-
→˓packages/urllib3/util/connection.py", line 73, in create_connection

sock.connect(sa)
socket.timeout: timed out
...
requests.exceptions.ConnectTimeout: HTTPConnectionPool(host='192.168.13.66',
→˓port=8080): Max retries exceeded with url: /manager/text/serverinfo (Caused by
→˓ConnectTimeoutError(<urllib3.connection.HTTPConnection object at 0x103180a20>,
→˓'Connection to 192.168.13.66 timed out. (connect timeout=2)'))

3.5 Use from Python

3.5.1 Connect to the server

Before you can do anything useful, you need to create a TomcatManager object and connect to a server.

18 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

TomcatManager.connect(url: str, user: str = ”, password: str = ”) → tomcatman-
ager.models.TomcatManagerResponse

Connect to a Tomcat Manager server.

Parameters url – url where the Tomcat Manager web application is deployed :param user: (op-
tional) user to authenticate with :param password: (optional) password to authenticate with :re-
turn: TomcatManagerResponse() object

You don’t have to connect before using any other commands. If you initialized the object with credentials you
can call any other method. This method:

• give you a way to change the credentials on an existing object

• provide a convenient mechanism to validate you can actually connect to the server

• allow you to inspect the response so you can see why you can’t connect

Usage:

>>> import tomcatmanager as tm
>>> url = 'http://localhost:8080/manager'
>>> user = 'ace'
>>> password = 'newenglandclamchowder'
>>> tomcat = tm.TomcatManager()
>>> try:
... r = tomcat.connect(url, user, password)
... if r.ok:
... print('connected')
... else:
... print('not connected')
... except Exception as err:
... # handle exception
... print('not connected')
not connected

The only way to validate whether we are connected is to make an HTTP request to the server and see if it returns
successfully. Internally this method tries to retrieve /manager/text/serverinfo.

Requesting url’s via http can raise all kinds of exceptions. For example, if you give a URL where no web server
is listening, you’ll get a requests.connections.ConnectionError. However, this method won’t
raise exceptions for everything. If the credentials are incorrect, you won’t get an exception unless you ask for it.

Requesting url’s via http can also result in redirection to another url. If that occurs, the new url, not the one you
passed, will be stored in the url attribute.

You can also use TomcatManager.is_connected() to check if you are connected.

If you want to raise more exceptions see TomcatManagerResponse.raise_for_status().

3.5.2 Responses from the server

All the methods of TomcatManager which interact with the server return a response in the form of a
TomcatManagerResponse object. Use this object to check whether the command completed successfully, and to
get any results generated by the command.

class tomcatmanager.models.TomcatManagerResponse(response=None)
Returned as the response for TomcatManager commands.

After running a command, it’s a good idea to check and make sure that the command completed succesfully
before relying on the results:

3.5. Use from Python 19

tomcatmanager Documentation, Release 1.0.0

>>> import tomcatmanager as tm
>>> tomcat = getfixture('tomcat')
>>> try:
... r = tomcat.server_info()
... r.raise_for_status()
... if r.ok:
... print(r.server_info.os_name)
... else:
... print('Error: {}'.format(r.status_message))
... except Exception as err:
... # handle exception
... pass
Linux

ok

Returns True if the request completed with no errors.

For this property to return True:

• The HTTP request must return a status code of 200 OK

• The first line of the response from the Tomcat Server must begin with OK.

raise_for_status()
Raise exceptions for server errors.

First this method calls requests.Response.raise_for_status() which raises exceptions if a
4xx or 5xx response is received from the server.

If that doesn’t raise anything, then it raises a TomcatError if there is not an OK response from the first
line of text back from the Tomcat Manager web app.

status_code
Status of the Tomcat Manager command from the first line of text.

The preferred way to check for success is to use the ok() method, because it checks for http errors as
well as tomcat errors. However, if you want specific access to the status of the tomcat command, use this
method.

There are three status codes:

• OK

• FAIL

• NOTFOUND

tomcatmanager.status_codes is a dictionary which makes it easy to check this code against
known values. It also has attributes with friendly names, as shown here:

>>> import tomcatmanager as tm
>>> tomcat = getfixture('tomcat')
>>> r = tomcat.server_info()
>>> r.status_code == tm.status_codes.ok
True

status_message
The message on the first line of the response from the Tomcat Server.

result
The text of the response from the Tomcat server, without the first line (which contains the status code and
message).

20 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

response
The server’s response to an HTTP request.

TomcatManager uses the excellent Requests package for HTTP communication. This property returns
the requests.models.Response object which contains the server’s response to the HTTP request.

Of particular use is requests.models.Response.text which contains the content of the response
in unicode. If you want raw access to the content returned by the Tomcat Server, this is where you can get
it.

3.5.3 Deploying applications

There are three methods you can use to deploy applications to a Tomcat server.

TomcatManager.deploy_localwar(path: str, warfile: str, version: str = None, update: bool = False)
→ tomcatmanager.models.TomcatManagerResponse

Deploy a warfile on the local file system to the Tomcat server.

Parameters

• path – The path on the server to deploy this war to, i.e. /sampleapp

• warfile – The path (specified using your local operating system convention) to a war file
on the local file system. You can also pass a stream or file-like object. This will be sent to
the server for deployment.

• version – (optional) For tomcat parallel deployments, the version string to associate with
this deployment

• update – (optional) Whether to undeploy the existing path first (default False)

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified; if no warfile is specified

TomcatManager.deploy_serverwar(path: str, warfile: str, version: str = None, update: bool =
False)→ tomcatmanager.models.TomcatManagerResponse

Deploy a warfile on the local file system to the Tomcat server.

Parameters

• path – The path on the server to deploy this war to, i.e. /sampleapp

• warfile – The java-style path (use slashes not backslashes) to the war file on the server.
Don’t include file: at the beginning.

• version – (optional) For tomcat parallel deployments, the version string to associate with
this deployment

• update – (optional) Whether to undeploy the existing path first (default False)

Returns TomcatManagerResponse object

Raises ValueError – if no path is given; if no warfile is given

TomcatManager.deploy_servercontext(path: str, contextfile: str, warfile: str = None, ver-
sion: str = None, update: bool = False) → tomcatman-
ager.models.TomcatManagerResponse

Deploy a Tomcat application defined by a context file.

Parameters

• path – The path on the server to deploy this war to, i.e. /sampleapp

3.5. Use from Python 21

tomcatmanager Documentation, Release 1.0.0

• contextfile – The java-style path (use slashes not backslashes) to the context file on
the server. Don’t include file: at the beginning.

• warfile – (optional) The java-style path (use slashes not backslashes) to the war file on
the server. Don’t include file: at the beginning.

• version – (optional) For tomcat parallel deployments, the version string to associate with
this deployment

• update – (optional) Whether to undeploy the existing path first (default False)

Returns TomcatManagerResponse object

Raises ValueError – if no path is given; if no contextfile is given

You can also undeploy applications. This removes the WAR file from the Tomcat server.

TomcatManager.undeploy(path: str, version: str = None) → tomcatman-
ager.models.TomcatManagerResponse

Undeploy the application at a given path.

Parameters

• path – The path of the application to undeploy

• version – (optional) The version string of the app to undeploy

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to undeploy the application.

3.5.4 Other application commands

TomcatManager.start(path: str, version: str = None) → tomcatman-
ager.models.TomcatManagerResponse

Start the application at a given path.

Parameters

• path – The path of the application to start

• version – (optional) The version string of the app to start

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to start the application.

TomcatManager.stop(path: str, version: str = None) → tomcatman-
ager.models.TomcatManagerResponse

Stop the application at a given path.

Parameters

• path – The path of the application to stop

• version – (optional) The version string of the app to stop

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to stop the application.

22 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

TomcatManager.reload(path: str, version: str = None) → tomcatman-
ager.models.TomcatManagerResponse

Reload (stop and start) the application at a given path.

Parameters

• path – The path of the application to reload

• version – (optional) The version string of the app to reload

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to reload the application.

TomcatManager.sessions(path: str, version: str = None) → tomcatman-
ager.models.TomcatManagerResponse

Get the age of the sessions in an application.

Parameters

• path – The path of the application to get session information about

• version – (optional) The version string of the app to get session information about

Returns TomcatManagerResponse object with the session summary in both the result at-
tribute and the sessions attribute

Raises ValueError – if no path is specified

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.sessions('/manager')
>>> if r.ok:
... session_data = r.sessions

TomcatManager.expire(path: str, version: str = None, idle: Any = None) → tomcatman-
ager.models.TomcatManagerResponse

Expire sessions idle for longer than idle minutes.

Parameters

• path – the path to the app on the server whose sessions you want to expire

• idle – sessions idle for more than this number of minutes will be expired. Use idle=0 to
expire all sessions.

Returns TomcatManagerResponse object with the session summary in both the result at-
tribute and the sessions attribute

Raises ValueError – if no path is specified

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.expire('/manager', idle=15)
>>> if r.ok:
... expiration_data = r.sessions

TomcatManager.list()→ tomcatmanager.models.TomcatManagerResponse
Get a list of all applications currently installed.

Returns TomcatManagerResponse object with an additional apps attribute which contains a
list of TomcatApplication objects

3.5. Use from Python 23

tomcatmanager Documentation, Release 1.0.0

Usage:

>>> import tomcatmanager as tm
>>> tomcat = getfixture('tomcat')
>>> r = tomcat.list()
>>> if r.ok:
... running = filter(lambda app: app.state == tm.application_states.running,
→˓r.apps)

3.5.5 Parallel Deployment

Tomcat supports a parallel deployment feature which allows multiple versions of the same WAR to be deployed
simultaneously at the same URL. To utilize this feature, you need to deploy an application with a version string. The
combination of path and version string uniquely identify the application:

>>> tomcat = getfixture('tomcat')
>>> safe_path = getfixture('safe_path')
>>> localwar_file = getfixture('localwar_file')
>>> with open(localwar_file, 'rb') as localwar_fileobj:
... r = tomcat.deploy_localwar(safe_path, localwar_fileobj, version='42')
... r.ok
True
>>> with open(localwar_file, 'rb') as localwar_fileobj:
... r = tomcat.deploy_localwar(safe_path, localwar_fileobj, version='43')
... r.ok
True

We now have two instances of the same application, deployed at the same location, but with different version strings.
To do anything to either of those applications, you must supply both the path and the version string:

>>> r = tomcat.stop(path=safe_path, version='42')
>>> r.ok
True
>>> r = tomcat.undeploy(path=safe_path, version='42')
>>> r.ok
True
>>> r = tomcat.undeploy(path=safe_path, version='43')
>>> r.ok
True

The following methods include an optional version parameter to support parallel deployments:

• deploy_localwar()

• deploy_serverwar()

• deploy_servercontext()

• undeploy()

• start()

• stop()

• reload()

• sessions()

• expire()

24 Chapter 3. Table of Contents

https://tomcat.apache.org/tomcat-8.5-doc/config/context.html#Parallel_deployment

tomcatmanager Documentation, Release 1.0.0

3.5.6 Information about Tomcat

There are a number of methods which just return information about the Tomcat server. With the exception of
find_leakers() (which triggers garbage collection), these methods don’t effect any change on the server.

TomcatManager.server_info()→ tomcatmanager.models.TomcatManagerResponse
Get information about the Tomcat server.

Returns TomcatManagerResponse object with an additional server_info attribute

The server_info attribute contains a ServerInfo object, which is a dictionary with some added proper-
ties for well-known values returned from the Tomcat server.

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.server_info()
>>> if r.ok:
... r.server_info['OS Name'] == r.server_info.os_name
True

TomcatManager.status_xml()→ tomcatmanager.models.TomcatManagerResponse
Get server status information in XML format.

Returns TomcatManagerResponse object with an additional status_xml attribute

Usage:

>>> import xml.etree.ElementTree as ET
>>> tomcat = getfixture('tomcat')
>>> r = tomcat.status_xml()
>>> if r.ok:
... root = ET.fromstring(r.status_xml)
... mem = root.find('jvm/memory')
... print('Free Memory = {}'.format(mem.attrib['free']))
Free Memory ...

Tomcat 8.0 doesn’t include application info in the XML, even though the docs say it does.

TomcatManager.vm_info()→ tomcatmanager.models.TomcatManagerResponse
Get diagnostic information about the JVM.

Returns TomcatManagerResponse object with an additional vm_info attribute

TomcatManager.ssl_connector_ciphers()→ tomcatmanager.models.TomcatManagerResponse
Get SSL/TLS ciphers configured for each connector.

Returns TomcatManagerResponse object with an additional ssl_connector_ciphers
attribute

TomcatManager.thread_dump()→ tomcatmanager.models.TomcatManagerResponse
Get a jvm thread dump.

Returns TomcatManagerResponse object with an additional thread_dump attribute

TomcatManager.resources(type_: str = None)→ tomcatmanager.models.TomcatManagerResponse
Get the global JNDI resources available for use in resource links for context config files

Parameters type – (optional) Fully qualified java class name of the resource type you are interested
in. For example, pass javax.sql.DataSource to acquire the names of all available JDBC
data sources.

Returns TomcatManagerResponse object with an additional resources attribute.

3.5. Use from Python 25

tomcatmanager Documentation, Release 1.0.0

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.resources()
>>> if r.ok:
... print(r.resources)
{'UserDatabase': 'org.apache.catalina.users.MemoryUserDatabase'}

resources is a dictionary with the resource name as the key and the class name as the value.

TomcatManager.find_leakers()→ tomcatmanager.models.TomcatManagerResponse
Get apps that leak memory.

Returns TomcatManagerResponse object with an additional leakers attribute

The leakers attribute contains a list of paths of applications which leak memory.

This command triggers a full garbage collection on the server. Use with extreme caution on production systems.

Explicity triggering a full garbage collection from code is documented to be unreliable. Furthermore, depending
on the jvm, there are options to disable explicit GC triggering, like -XX:+DisableExplicitGC. If you
want to make sure this command triggered a full GC, you will have to verify using something like GC logging
or JConsole.

The Tomcat Manager documentation says the server can return duplicates in this list if the app has been reloaded
and was leaking both before and after the reload. The list returned by the leakers attribute will have no
duplicates in it.

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.find_leakers()
>>> if r.ok:
... cnt = len(r.leakers)
... else:
... cnt = 0

3.6 API Documentation

Python API documentation for tomcatmanager 1.0.0

tomcatmanager is a command line tool and python library for managing a Tomcat server.

The most important class in the package is TomcatManager. This class connects to a Tomcat Manager
web application, allows you to run various commands, and returns the responses to you as an instance of
TomcatManagerResponse.

The interactive command line program tomcat-manager provided by this package is an instance of
InteractiveTomcatManager.

Here’s the classes defined by this package:

3.6.1 TomcatManager

class tomcatmanager.tomcat_manager.TomcatManager
A class for interacting with the Tomcat Manager web application.

26 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

Here’s a summary of the recommended way to use this class with proper exception and error handling. For this
example, we’ll use the server_info() method.

>>> import tomcatmanager as tm
>>> url = 'http://localhost:8080/manager'
>>> user = 'ace'
>>> password = 'newenglandclamchowder'
>>> tomcat = tm.TomcatManager()
>>> try:
... r = tomcat.connect(url, user, password)
... if r.ok:
... r = tomcat.server_info()
... if r.ok:
... print(r.server_info)
... else:
... print('Error: {}'.format(r.status_message))
... else:
... print('Error: not connected')
... except Exception as err:
... # handle exception
... print('Error: not connected')
Error: not connected

connect(url: str, user: str = ”, password: str = ”) → tomcatman-
ager.models.TomcatManagerResponse

Connect to a Tomcat Manager server.

Parameters url – url where the Tomcat Manager web application is deployed :param user:
(optional) user to authenticate with :param password: (optional) password to authenticate
with :return: TomcatManagerResponse() object

You don’t have to connect before using any other commands. If you initialized the object with credentials
you can call any other method. This method:

• give you a way to change the credentials on an existing object

• provide a convenient mechanism to validate you can actually connect to the server

• allow you to inspect the response so you can see why you can’t connect

Usage:

>>> import tomcatmanager as tm
>>> url = 'http://localhost:8080/manager'
>>> user = 'ace'
>>> password = 'newenglandclamchowder'
>>> tomcat = tm.TomcatManager()
>>> try:
... r = tomcat.connect(url, user, password)
... if r.ok:
... print('connected')
... else:
... print('not connected')
... except Exception as err:
... # handle exception
... print('not connected')
not connected

The only way to validate whether we are connected is to make an HTTP request to the server and see if it
returns successfully. Internally this method tries to retrieve /manager/text/serverinfo.

3.6. API Documentation 27

tomcatmanager Documentation, Release 1.0.0

Requesting url’s via http can raise all kinds of exceptions. For example, if you give a URL where no
web server is listening, you’ll get a requests.connections.ConnectionError. However, this
method won’t raise exceptions for everything. If the credentials are incorrect, you won’t get an exception
unless you ask for it.

Requesting url’s via http can also result in redirection to another url. If that occurs, the new url, not the
one you passed, will be stored in the url attribute.

You can also use TomcatManager.is_connected() to check if you are connected.

If you want to raise more exceptions see TomcatManagerResponse.raise_for_status().

is_connected
Does the url point to an actual tomcat server and are the credentials valid?

Returns True if connected to a tomcat server, otherwise, False.

deploy_localwar(path: str, warfile: str, version: str = None, update: bool = False)→ tomcatman-
ager.models.TomcatManagerResponse

Deploy a warfile on the local file system to the Tomcat server.

Parameters

• path – The path on the server to deploy this war to, i.e. /sampleapp

• warfile – The path (specified using your local operating system convention) to a war
file on the local file system. You can also pass a stream or file-like object. This will be
sent to the server for deployment.

• version – (optional) For tomcat parallel deployments, the version string to associate
with this deployment

• update – (optional) Whether to undeploy the existing path first (default False)

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified; if no warfile is specified

deploy_serverwar(path: str, warfile: str, version: str = None, update: bool = False) → tomcat-
manager.models.TomcatManagerResponse

Deploy a warfile on the local file system to the Tomcat server.

Parameters

• path – The path on the server to deploy this war to, i.e. /sampleapp

• warfile – The java-style path (use slashes not backslashes) to the war file on the server.
Don’t include file: at the beginning.

• version – (optional) For tomcat parallel deployments, the version string to associate
with this deployment

• update – (optional) Whether to undeploy the existing path first (default False)

Returns TomcatManagerResponse object

Raises ValueError – if no path is given; if no warfile is given

deploy_servercontext(path: str, contextfile: str, warfile: str = None, version: str = None, update:
bool = False)→ tomcatmanager.models.TomcatManagerResponse

Deploy a Tomcat application defined by a context file.

Parameters

• path – The path on the server to deploy this war to, i.e. /sampleapp

28 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

• contextfile – The java-style path (use slashes not backslashes) to the context file on
the server. Don’t include file: at the beginning.

• warfile – (optional) The java-style path (use slashes not backslashes) to the war file on
the server. Don’t include file: at the beginning.

• version – (optional) For tomcat parallel deployments, the version string to associate
with this deployment

• update – (optional) Whether to undeploy the existing path first (default False)

Returns TomcatManagerResponse object

Raises ValueError – if no path is given; if no contextfile is given

undeploy(path: str, version: str = None)→ tomcatmanager.models.TomcatManagerResponse
Undeploy the application at a given path.

Parameters

• path – The path of the application to undeploy

• version – (optional) The version string of the app to undeploy

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to undeploy the applica-
tion.

start(path: str, version: str = None)→ tomcatmanager.models.TomcatManagerResponse
Start the application at a given path.

Parameters

• path – The path of the application to start

• version – (optional) The version string of the app to start

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to start the application.

stop(path: str, version: str = None)→ tomcatmanager.models.TomcatManagerResponse
Stop the application at a given path.

Parameters

• path – The path of the application to stop

• version – (optional) The version string of the app to stop

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to stop the application.

reload(path: str, version: str = None)→ tomcatmanager.models.TomcatManagerResponse
Reload (stop and start) the application at a given path.

Parameters

• path – The path of the application to reload

• version – (optional) The version string of the app to reload

3.6. API Documentation 29

tomcatmanager Documentation, Release 1.0.0

Returns TomcatManagerResponse object

Raises ValueError – if no path is specified

If the application was deployed with a version string, it must be specified in order to reload the application.

sessions(path: str, version: str = None)→ tomcatmanager.models.TomcatManagerResponse
Get the age of the sessions in an application.

Parameters

• path – The path of the application to get session information about

• version – (optional) The version string of the app to get session information about

Returns TomcatManagerResponse object with the session summary in both the result
attribute and the sessions attribute

Raises ValueError – if no path is specified

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.sessions('/manager')
>>> if r.ok:
... session_data = r.sessions

expire(path: str, version: str = None, idle: Any = None) → tomcatman-
ager.models.TomcatManagerResponse

Expire sessions idle for longer than idle minutes.

Parameters

• path – the path to the app on the server whose sessions you want to expire

• idle – sessions idle for more than this number of minutes will be expired. Use idle=0 to
expire all sessions.

Returns TomcatManagerResponse object with the session summary in both the result
attribute and the sessions attribute

Raises ValueError – if no path is specified

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.expire('/manager', idle=15)
>>> if r.ok:
... expiration_data = r.sessions

list()→ tomcatmanager.models.TomcatManagerResponse
Get a list of all applications currently installed.

Returns TomcatManagerResponse object with an additional apps attribute which con-
tains a list of TomcatApplication objects

Usage:

>>> import tomcatmanager as tm
>>> tomcat = getfixture('tomcat')
>>> r = tomcat.list()
>>> if r.ok:
... running = filter(lambda app: app.state == tm.application_states.
→˓running, r.apps)

30 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

server_info()→ tomcatmanager.models.TomcatManagerResponse
Get information about the Tomcat server.

Returns TomcatManagerResponse object with an additional server_info attribute

The server_info attribute contains a ServerInfo object, which is a dictionary with some added
properties for well-known values returned from the Tomcat server.

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.server_info()
>>> if r.ok:
... r.server_info['OS Name'] == r.server_info.os_name
True

status_xml()→ tomcatmanager.models.TomcatManagerResponse
Get server status information in XML format.

Returns TomcatManagerResponse object with an additional status_xml attribute

Usage:

>>> import xml.etree.ElementTree as ET
>>> tomcat = getfixture('tomcat')
>>> r = tomcat.status_xml()
>>> if r.ok:
... root = ET.fromstring(r.status_xml)
... mem = root.find('jvm/memory')
... print('Free Memory = {}'.format(mem.attrib['free']))
Free Memory ...

Tomcat 8.0 doesn’t include application info in the XML, even though the docs say it does.

vm_info()→ tomcatmanager.models.TomcatManagerResponse
Get diagnostic information about the JVM.

Returns TomcatManagerResponse object with an additional vm_info attribute

ssl_connector_ciphers()→ tomcatmanager.models.TomcatManagerResponse
Get SSL/TLS ciphers configured for each connector.

Returns TomcatManagerResponse object with an additional
ssl_connector_ciphers attribute

thread_dump()→ tomcatmanager.models.TomcatManagerResponse
Get a jvm thread dump.

Returns TomcatManagerResponse object with an additional thread_dump attribute

resources(type_: str = None)→ tomcatmanager.models.TomcatManagerResponse
Get the global JNDI resources available for use in resource links for context config files

Parameters type – (optional) Fully qualified java class name of the resource type you are
interested in. For example, pass javax.sql.DataSource to acquire the names of all
available JDBC data sources.

Returns TomcatManagerResponse object with an additional resources attribute.

Usage:

3.6. API Documentation 31

tomcatmanager Documentation, Release 1.0.0

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.resources()
>>> if r.ok:
... print(r.resources)
{'UserDatabase': 'org.apache.catalina.users.MemoryUserDatabase'}

resources is a dictionary with the resource name as the key and the class name as the value.

find_leakers()→ tomcatmanager.models.TomcatManagerResponse
Get apps that leak memory.

Returns TomcatManagerResponse object with an additional leakers attribute

The leakers attribute contains a list of paths of applications which leak memory.

This command triggers a full garbage collection on the server. Use with extreme caution on production
systems.

Explicity triggering a full garbage collection from code is documented to be unreliable. Fur-
thermore, depending on the jvm, there are options to disable explicit GC triggering, like
-XX:+DisableExplicitGC. If you want to make sure this command triggered a full GC, you will
have to verify using something like GC logging or JConsole.

The Tomcat Manager documentation says the server can return duplicates in this list if the app has been
reloaded and was leaking both before and after the reload. The list returned by the leakers attribute will
have no duplicates in it.

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.find_leakers()
>>> if r.ok:
... cnt = len(r.leakers)
... else:
... cnt = 0

3.6.2 TomcatManagerResponse

class tomcatmanager.models.TomcatManagerResponse(response=None)
Returned as the response for TomcatManager commands.

After running a command, it’s a good idea to check and make sure that the command completed succesfully
before relying on the results:

>>> import tomcatmanager as tm
>>> tomcat = getfixture('tomcat')
>>> try:
... r = tomcat.server_info()
... r.raise_for_status()
... if r.ok:
... print(r.server_info.os_name)
... else:
... print('Error: {}'.format(r.status_message))
... except Exception as err:
... # handle exception
... pass
Linux

32 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

ok

Returns True if the request completed with no errors.

For this property to return True:

• The HTTP request must return a status code of 200 OK

• The first line of the response from the Tomcat Server must begin with OK.

raise_for_status()
Raise exceptions for server errors.

First this method calls requests.Response.raise_for_status() which raises exceptions if a
4xx or 5xx response is received from the server.

If that doesn’t raise anything, then it raises a TomcatError if there is not an OK response from the first
line of text back from the Tomcat Manager web app.

status_code
Status of the Tomcat Manager command from the first line of text.

The preferred way to check for success is to use the ok() method, because it checks for http errors as
well as tomcat errors. However, if you want specific access to the status of the tomcat command, use this
method.

There are three status codes:

• OK

• FAIL

• NOTFOUND

tomcatmanager.status_codes is a dictionary which makes it easy to check this code against
known values. It also has attributes with friendly names, as shown here:

>>> import tomcatmanager as tm
>>> tomcat = getfixture('tomcat')
>>> r = tomcat.server_info()
>>> r.status_code == tm.status_codes.ok
True

status_message
The message on the first line of the response from the Tomcat Server.

result
The text of the response from the Tomcat server, without the first line (which contains the status code and
message).

response
The server’s response to an HTTP request.

TomcatManager uses the excellent Requests package for HTTP communication. This property returns
the requests.models.Response object which contains the server’s response to the HTTP request.

Of particular use is requests.models.Response.text which contains the content of the response
in unicode. If you want raw access to the content returned by the Tomcat Server, this is where you can get
it.

3.6. API Documentation 33

tomcatmanager Documentation, Release 1.0.0

3.6.3 TomcatApplication

class tomcatmanager.models.TomcatApplication
Discrete data about an application running inside a Tomcat Server.

A list of these objects is returned by TomcatManager.list().

classmethod sort_by_state_by_path_by_version(app: TA)
Function to create a key usable by sort to sort by state, by path, by version.

classmethod sort_by_path_by_version_by_state(app: TA)
Function to create a key usable by sort to sort by path, by version, by state

parse(line: str)
Parse a line from the server into this object.

Param line - the line of text from Tomcat Manager describing a deployed application

Tomcat Manager outputs a line like this for each application:

/shiny:running:0:shiny##v2.0.6

The data elements in this line can be described as:

{path}:{state}:{sessions}:{directory}##{version}

Where version and the two hash marks that precede it are optional.

path
The context path, or relative URL, where this app is available on the server.

state
The current state of the application.

tomcatmanager.application_states is a dictionary of all the valid values for this property. In
addition to being a dictionary, it also has attributes for each possible state:

>>> import tomcatmanager as tm
>>> tm.application_states['stopped']
'stopped'
>>> tm.application_states.running
'running'

sessions
The number of currently active sessions.

directory
The directory on the server where this application resides.

version
The version of the application given when it was deployed.

If deployed without a version, this property returns None.

directory_and_version
Combine directory and version together.

Tomcat provides this information as {directory} if there was no version specified when the application
was deployed, or {directory}##{version} if the version was specified.

This method has the logic to determine if version was specified or not.

34 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

3.6.4 ServerInfo

class tomcatmanager.models.ServerInfo(*args, **kwargs)
Discrete data about the Tomcat server.

This object is a dictionary of keys and values as returned from the Tomcat server. It also has properties for
well-known values.

Usage:

>>> tomcat = getfixture('tomcat')
>>> r = tomcat.server_info()
>>> r.server_info['OS Architecture']
'...'
>>> r.server_info.jvm_vendor
'...'

tomcat_version
The tomcat version string.

os_name
The operating system name.

os_version
The operating system version.

os_architecture
The operating system architecture.

jvm_version
The java virtual machine version string.

jvm_vendor
The java virtual machine vendor.

3.6.5 InteractiveTomcatManager

class tomcatmanager.interactive_tomcat_manager.InteractiveTomcatManager
An interactive command line tool for the Tomcat Manager web application.

each command sets the value of the instance variable exit_code, which mirrors bash standard values for exit
codes (available via $?)

EXIT_CODES = {0: 'success', 1: 'error', 2: 'usage', 127: 'command_not_found'}

BOOLEAN_VALUES = {'0': False, '1': True, 'f': False, 'false': False, 'n': False, 'no': False, 'off': False, 'on': True, 't': True, 'true': True, 'y': True, 'yes': True}

exit_codes = {'command_not_found': 127, 'error': 1, 'success': 0, 'usage': 2}

app_name = 'tomcat-manager'

app_author = 'tomcatmanager'

config = None

timeout = 10

status_prefix = '--'

status_to_stdout
Proxy property for feedback_to_output.

3.6. API Documentation 35

tomcatmanager Documentation, Release 1.0.0

poutput(msg: Any = ”, *, end: str = ’\n’)→ None
Convenient shortcut for self.stdout.write(); by default adds newline to end if not already present.

Also handles BrokenPipeError exceptions for when a commands’s output has been piped to another process
and that process terminates before the cmd2 command is finished executing.

Parameters

• msg – str - message to print to current stdout - anyting convertible to a str with ‘{}’.for-
mat() is OK

• end – str - string appended after the end of the message if not already present, default a
newline

perror(msg: Any = ”, *, end: str = ’\n’)→ None
Print an error message or an exception.

Param errmsg The error message to print. If None, then print information about the exception
currently beging handled.

Param exception_type From superclass. Ignored here.

Param traceback_war From superclass. Ignored here.

If debug=True, you will get a full stack trace, otherwise just the exception.

pfeedback(msg: Any, *, end: str = ’\n’)→ None
Print nonessential feedback.

Set quiet=True to supress all feedback. If feedback_to_output=True, then feedback will be included in the
output stream. Otherwise, it will be sent to sys.stderr.

emptyline()
Do nothing on an empty line

default(statement: cmd2.parsing.Statement)
what to do if we don’t recognize the command the user entered

docmd(func: Callable, *args, **kwargs)→ Any
Call a function and return, printing any exceptions that occur

Sets exit_code to 0 and calls {func}. If func throws a TomcatError, set exit_code to 1 and print the
exception

show_help_from(argparser: argparse.ArgumentParser)
Set exit code and output help from an argparser.

parse_args(parser: argparse.ArgumentParser, argv: List[T])→ argparse.Namespace
Use argparse to parse a list of arguments a-la sys.argv

do_help(args: str)
Show available commands, or help on a specific command.

config_parser = ArgumentParser(prog='config', usage=None, description='Edit or show the location of the user configuration file.', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_config(cmdline: cmd2.parsing.Statement)
Edit or show the location of the user configuration file.

help_config()
Show help for the ‘config’ command.

show_parser = ArgumentParser(prog='show', usage=None, description='Show all settings or a specific setting.', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_show(cmdline: cmd2.parsing.Statement)
Show all settings or a specific setting.

36 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

help_show()
Show help for the ‘show’ command.

settings_parser = ArgumentParser(prog='settings', usage=None, description="Show all settings or a specific setting. Synonym for 'show'.", formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_settings(cmdline: cmd2.parsing.Statement)
Synonym for ‘show’ command.

help_settings()
Show help for the ‘settings’ command.

do_set(args: cmd2.parsing.Statement)
Change program settings.

help_set()
Show help for the ‘set’ command.

config_file
The location of the user configuration file.

Returns The full path to the user configuration file, or None if self.appdirs has not been defined.

history_file
The location of the command history file.

Returns The full path to the file where command history will be saved and loaded, or None if
self.appdirs has not been defined.

load_config()
Open and parse the user config file and set self.config.

convert_to_boolean(value: Any)
Return a boolean value translating from other types if necessary.

connect_parser = ArgumentParser(prog='connect', usage='%(prog)s [-h] config_name\n %(prog)s [-h] url [user] [password]', description='connect to a tomcat manager instance', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_connect(cmdline: cmd2.parsing.Statement)
Connect to a tomcat manager instance.

help_connect()
Show help for the connect command.

which_parser = ArgumentParser(prog='which', usage=None, description='show the url of the tomcat server you are connected to', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_which(*args, **kwargs)
Show the url of the tomcat server you are connected to.

help_which()
Show help for the ‘which’ command.

deploy_local(args: argparse.Namespace, update: bool = False)
Deploy a local war file to the tomcat server.

deploy_server(args: argparse.Namespace, update: bool = False)
Deploy a war file to the tomcat server.

deploy_context(args: argparse.Namespace, update: bool = False)
Deploy a context xml file to the tomcat server.

deploy_parser = ArgumentParser(prog='deploy', usage=None, description='deploy an application to the tomcat server', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_deploy(*args, **kwargs)
Deploy an application to the tomcat server.

3.6. API Documentation 37

tomcatmanager Documentation, Release 1.0.0

help_deploy()
Show help for the deploy command.

redeploy_parser = ArgumentParser(prog='redeploy', usage=None, description='deploy an application to the tomcat server, undeploying any application at the given path', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_redeploy(*args, **kwargs)
Redeploy an application to the tomcat server.

help_redeploy()
Show help for the redeploy command.

undeploy_parser = ArgumentParser(prog='undeploy', usage=None, description='Remove an application at a given path from the tomcat server.', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_undeploy(*args, **kwargs)
Remove an application from the tomcat server.

help_undeploy()
Help for the ‘undeploy’ command.

start_parser = ArgumentParser(prog='start', usage=None, description="Start a tomcat application that has been deployed but isn't running.", formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_start(*args, **kwargs)
Start a deployed tomcat application that isn’t running.

help_start()
Help for the ‘start’ command.

stop_parser = ArgumentParser(prog='stop', usage=None, description='Stop a running tomcat application and leave it deployed on the server.', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_stop(*args, **kwargs)
Stop a tomcat application and leave it deployed on the server.

help_stop()
Help for the ‘stop’ command.

reload_parser = ArgumentParser(prog='reload', usage=None, description="Start and stop a tomcat application. Synonym for 'restart'.", formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_reload(*args, **kwargs)
Start and stop a tomcat application.

help_reload()
Help for the ‘reload’ command.

restart_parser = ArgumentParser(prog='restart', usage=None, description='Start and stop a tomcat application.', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_restart(*args, **kwargs)
Start and stop a tomcat application.

help_restart()
Show help for the ‘restart’ command.

sessions_parser = ArgumentParser(prog='sessions', usage=None, description='Show active sessions for a tomcat application.', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_sessions(*args, **kwargs)
Show active sessions for a tomcat application.

help_sessions()
Help for the ‘sessions’ command.

expire_parser = ArgumentParser(prog='expire', usage=None, description='expire idle sessions', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_expire(*args, **kwargs)
Expire idle sessions.

help_expire()
Help for the ‘expire’ command.

38 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

list_parser = ArgumentParser(prog='list', usage=None, description='Show all installed applications', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=False)

do_list(*args, **kwargs)
Show all installed applications.

help_list()
Show help for the ‘list’ command.

serverinfo_parser = ArgumentParser(prog='serverinfo', usage=None, description='show information about the tomcat server', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_serverinfo(*args, **kwargs)
Show information about the tomcat server.

help_serverinfo()
Show help for the ‘serverinfo’ command.

status_parser = ArgumentParser(prog='status', usage=None, description='show server status information in xml format', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_status(*args, **kwargs)
Show server status information in xml format.

help_status()
Show help for the ‘status’ command.

vminfo_parser = ArgumentParser(prog='vminfo', usage=None, description='show diagnostic information about the jvm', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_vminfo(*args, **kwargs)
Show diagnostic information about the jvm.

help_vminfo()
Show help for the ‘vminfo’ command.

sslconnectorciphers_parser = ArgumentParser(prog='sslconnectorciphers', usage=None, description='show SSL/TLS ciphers configured for each connector', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_sslconnectorciphers(*args, **kwargs)
Show SSL/TLS ciphers configured for each connector.

help_sslconnectorciphers()
Show help for the ‘sslconnectorciphers’ command.

threaddump_parser = ArgumentParser(prog='threaddump', usage=None, description='show a jvm thread dump', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_threaddump(*args, **kwargs)
Show a jvm thread dump.

help_threaddump()
Show help for the ‘threaddump’ command.

resources_parser = ArgumentParser(prog='resources', usage=None, description='show global JNDI resources configured in tomcat', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_resources(*args, **kwargs)
Show global JNDI resources configured in Tomcat.

help_resources()
Show help for the ‘resources’ command.

findleakers_parser = ArgumentParser(prog='findleakers', usage=None, description='show tomcat applications that leak memory', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_findleakers(*args, **kwargs)
Show tomcat applications that leak memory.

help_findleakers()
Show help for the ‘findleakers’ command.

do_exit(_)
Exit the interactive command prompt.

3.6. API Documentation 39

tomcatmanager Documentation, Release 1.0.0

do_quit(cmdline: cmd2.parsing.Statement)
Synonym for the ‘exit’ command.

do_eof(cmdline: cmd2.parsing.Statement)
Exit on the end-of-file character.

version_parser = ArgumentParser(prog='version', usage=None, description='show the version number of this program', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_version(cmdline: cmd2.parsing.Statement)
Show the version number of this program.

help_version()
Show help for the ‘version’ command.

exit_code_epilog = ['The codes have the following meanings:', ' 0 success', ' 1 error', ' 2 usage', ' 127 command not found']

exit_code_parser = ArgumentParser(prog='exit_code', usage=None, description='show a number indicating the status of the previous command', formatter_class=<class 'argparse.RawDescriptionHelpFormatter'>, conflict_handler='error', add_help=True)

do_exit_code(_)
Show a number indicating the status of the previous command.

help_exit_code()
Show help for the ‘exit_code’ command.

license_parser = ArgumentParser(prog='license', usage=None, description='show the software license for this program', formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error', add_help=True)

do_license(cmdline: cmd2.parsing.Statement)
Show the software license for this program.

help_license()
Show help for the ‘license’ command.

name = 'command_not_found'

number = 127

3.6.6 TomcatError

class tomcatmanager.models.TomcatError
Raised when the Tomcat Server responds with an error.

3.7 Contributing

3.7.1 Get Source Code

Clone the repo from github:

$ git clone git@github.com:tomcatmanager/tomcatmanager.git

3.7.2 Create Python Environments

tomcatamanger uses tox to run the test suite against multiple python versions. I recommend using pyenv with the
pyenv-virtualenv plugin to manage these various versions. If you are a Windows user, pyenv won’t work for you,
you’ll probably have to use conda.

This distribution includes a shell script build-pyenvs.sh which automates the creation of these environments.

If you prefer to create these virtual envs by hand, do the following:

40 Chapter 3. Table of Contents

https://tox.readthedocs.io/en/latest/
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv-virtualenv
https://conda.io/

tomcatmanager Documentation, Release 1.0.0

$ cd tomcatmanager
$ pyenv install 3.8.0
$ pyenv virtualenv -p python3.8 3.8.0 tomcatmanager-3.8
$ pyenv install 3.7.5
$ pyenv virtualenv -p python3.7 3.7.5 tomcatmanager-3.7
$ pyenv install 3.6.9
$ pyenv virtualenv -p python3.6 3.6.9 tomcatmanager-3.6
$ pyenv install 3.5.8
$ pyenv virtualenv -p python3.5 3.5.8 tomcatmanager-3.5

Now set pyenv to make all four of those available at the same time:

$ pyenv local tomcatmanager-3.8 tomcatmanager-3.7 tomcatmanager-3.6 tomcatmanager-3.5

Whether you ran the script, or did it by hand, you now have isolated virtualenvs for each of the minor python versions.
This table shows various python commands, the version of python which will be executed, and the virtualenv it will
utilize.

Command python virtualenv
python 3.8.0 tomcatmanager-3.8
python3 3.8.0 tomcatmanager-3.8
python3.8 3.8.0 tomcatmanager-3.8
python3.7 3.7.5 tomcatmanager-3.7
python3.6 3.6.9 tomcatmanager-3.6
python3.5 3.5.8 tomcatmanager-3.5
pip 3.8.0 tomcatmanager-3.8
pip3 3.8.0 tomcatmanager-3.8
pip3.8 3.8.0 tomcatmanager-3.8
pip3.7 3.7.5 tomcatmanager-3.7
pip3.6 3.6.9 tomcatmanager-3.6
pip3.5 3.5.8 tomcatmanager-3.5

3.7.3 Install Dependencies

Now install all the development dependencies:

$ pip install -e .[dev]

This installs the tomcatmanager package “in-place”, so the package points to the source code instead of copying files
to the python site-packages folder.

All the dependencies now have been installed in the tomcatmanager-3.8 virtualenv. If you want to work in other
virtualenvs, you’ll need to manually select it, and install again:

$ pyenv shell tomcatmanager-3.6
$ pip install -e .[dev]

3.7.4 Branches, Tags, and Versions

This project uses a simplified version of the git flow branching strategy. We don’t use release branches, and we
generally don’t do hotfixes, so we don’t have any of those branches either. The master branch always contains the
latest release of the code uploaded to PyPI, with a tag for the version number of that release.

3.7. Contributing 41

http://nvie.com/posts/a-successful-git-branching-model/

tomcatmanager Documentation, Release 1.0.0

The develop branch is where all the action occurs. Feature branches are welcome. When it’s time for a release, we
merge develop into master.

This project uses semantic versioning.

3.7.5 Invoking Common Development Tasks

This project uses many other python modules for various development tasks, including testing, rendering documenta-
tion, and building and distributing releases. These modules can be configured many different ways, which can make it
difficult to learn the specific incantations required for each project you are familiar with.

This project uses invoke to provide a clean, high level interface for these development tasks. To see the full list of
functions available:

$ invoke -l

You can run multiple tasks in a single invocation, for example:

$ invoke clean docs sdist wheel

That one command will remove all superflous cache, testing, and build files, render the documentation, and build a
source distribution and a wheel distribution.

You probably won’t need to read further in this document unless you want more information about the specific tools
used.

3.7.6 Testing

To ensure the tests can run without an external dependencies, tests/mock_server80.py contains a HTTP server
which emulates the behavior of Tomcat Manager 8.0. There is a test fixture to start this server, and all the tests run
against this fixture. I created this fixture to speed up testing time. It doesn’t do everything a real Tomcat server does,
but it’s close enough for the tests to run, and it allows you to parallelize the test suite using python-xdist.

You can run the tests against all the supported versions of python using tox:

$ tox

tox expects that when it runs python3.4 it will actually get a python from the 3.4.x series. That’s why we set up the
various python environments earlier.

If you just want to run the tests in your current python environment, use pytest:

$ pytest

This runs all the test in tests/ and also runs doctests in tomcatmanager/ and docs/.

You can speed up the test suite by using pytest-xdist to parallelize the tests across the number of cores you have:

$ pip install pytest-xdist
$ pytest -n8

In many of the doctests you’ll see something like:

>>> tomcat = getfixture('tomcat')

This getfixture() helper imports fixtures defined in conftest.py, which has several benefits:

42 Chapter 3. Table of Contents

https://semver.org/
http://www.pyinvoke.org

tomcatmanager Documentation, Release 1.0.0

• reduces the amount of redundant code in doctests which shows connecting to a tomcat server and handling
exceptions

• allows doctests to execute against a mock tomcat server

3.7.7 Testing Against A Real Server

If you wish, you can run the test suite against a real Tomcat Server instead of against the mock server included in
this distribution. Running the test suite will deploy and undeploy an app hundreds of times, and will definitely trigger
garbage collection, so you might not want to run it against a production server.

It’s also slow (which is why the tests normally run against a mock server). When I run the test suite against a stock
Tomcat on a Linode with 2 cores and 4GB of memory it takes approximately 3 minutes to complete. I don’t think
throwing more CPU at this would make it any faster: during the run of the test suite the Tomcat Server never consumes
more than a few percent of the CPU capacity.

You must prepare some files on the server in order for the test suite to run successfully. Some of the tests instruct the
Tomcat Server to deploy an application from a warfile stored on the server. I suggest you use the minimal application
included in this distribution at tomcatmanager/tests/war/sample.war, but you can use any valid war file.
Put this file in some directory on the server; I typically put it in /tmp/sample.war.

You must also construct a minimal context file on the server. You can see an example of such a context file in
tomcatmanager/tests/war/context.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Context configuration file for my web application -->
<Context path='/ignored' docBase='/tmp/sample.war'>
</Context>

The docBase attribute must point to a valid war file or the tests will fail. It can be the same minimal war file you
already put on the server. The path attribute is ignored for context files that are not visible to Tomcat when it starts
up, so it doesn’t matter what you have there. I typically put this context file at /tmp/context.xml.

You will also need:

• the url where the manager app of your Tomcat Server is available

• a user with the manager-script role

• the password for the aforementioned user

With all these prerequisites ready, you can feed them to pytest as shown:

$ pytest --url=http://localhost:8080/manager --user=ace \
--password=newenglandclamchowder --warfile=/tmp/sample.war \
--contextfile=/tmp/context.xml

Warning: If you test against a real Tomcat server, you should not use the pytest-xdist plugin to parallelize
testing across multiple CPUs or many platforms. Many of the tests depend on deploying and undeploying an app
at a specific path, and that path is shared across the entire test suite. It wouldn’t help much anyway because the
testing is constrained by the speed of the Tomcat server.

If you kill the test suite in the middle of a run, you may leave the test application deployed in your tomcat server. If
this happens, you must undeploy it before rerunning the test suite or you will get lots of errors.

When the test suite deploys applications, it will be at the path returned by the safe_path fixture in conftest.py.
You can modify that fixture if for some reason you need to deploy at a different path.

3.7. Contributing 43

tomcatmanager Documentation, Release 1.0.0

3.7.8 Code Quality

Use pylint to check code quality. There is a pylint config file for the tests and for the main module:

$ pylint --rcfile=tests/pylintrc tests
$ pylint --rcfile=tomcatmanager/pylintrc tomcatmanager

You are welcome to use the pylint comment directives to disable certain messages in the code, but pull requests
containing these directives will be carefully scrutinized.

As allowed by PEP 8 this project uses a nominal line length of 100 characters.

3.7.9 Documentation

The documentation is written in reStructured Test, and turned into HTML using Sphinx:

$ cd docs
$ make html

The output will be in docs/build/html.

If you are doing a lot of documentation work, the sphinx-autobuild module has been integrated. Type:

$ cd docs
$ make livehtml

Then point your browser at http://localhost:8000 to see the documentation automatically rebuilt as you save your
changes.

Note: The sphinx-autobuild module has some limitations. Much of the documentation produced in this project
is contained in the source code, and is incorporated via the Sphinx autodoc module. In order for autodoc to work,
it must import the source code, and it’s not very good about noticing and reloading source code modules as they
change. If you change the source code and want to make sure you are seeing the current changes in your browser, best
to kill the webserver and start it back up again.

Use doc8 to check documentation quality:

$ invoke doc8

3.7.10 Make a Release

To make a release and deploy it to PyPI, do the following:

1. Merge everything to be included in the release into the develop branch.

2. Run tox to make sure the tests pass in all the supported python versions.

3. Review and update CHANGELOG.rst.

4. Update the milestone corresponding to the release at https://github.com/tomcatmanager/tomcatmanager/
milestones

5. Push the develop branch to github.

6. Create a pull request on github to merge the develop branch into master. Wait for the checks to pass.

7. Merge the develop branch into the master branch and close the pull request.

44 Chapter 3. Table of Contents

https://www.python.org/dev/peps/pep-0008/#maximum-line-length
http://www.sphinx-doc.org
https://github.com/GaretJax/sphinx-autobuild
http://localhost:8000
https://pypi.python.org/pypi
https://github.com/tomcatmanager/tomcatmanager/milestones
https://github.com/tomcatmanager/tomcatmanager/milestones

tomcatmanager Documentation, Release 1.0.0

8. Tag the master branch with the new version number, and push the tag.

9. Build source distribution, wheel distribution, and upload them to pypi staging:

$ invoke pypi-test

10. Build source distribution, wheel distribution, and upload them to pypi:

$ invoke pypi

11. Docs are automatically deployed to http://tomcatmanager.readthedocs.io/en/stable/. Make sure they look good.

12. Switch back to the develop branch. Add an Unreleased section to the top of CHANGELOG.rst. Push the
change to github.

3.8 Changelog

All notable changes to tomcatmanager will be documented in this file.

The format is based on Keep a Changelog and this project uses Semantic Versioning.

3.8.1 1.0.0 (2020-02-01)

Changed

• Switch documentation theme from ‘alabaster’ to ‘sphinx_rtd_theme’

Added

• Already have a setting to control network timeouts. Added a command line option ‘–timeout’ to do the same,
making it easier for modify for command-line only use.

• Adjustments for upstream changes in cmd2. No longer pinned to cmd2=0.9.4, but require cmd2>=0.9.14.

• Add support for Python 3.8.

• Add documentation style checking using doc8.

Removed

• Drop support for Python 3.4, which reached end-of-life on Mar 18, 2019.

3.8.2 0.14.0 (2019-05-16)

Changed

• invoke clean.pycache is now invoke clean.bytecode

• Run tests using python 3.7 on Appveyor and Travis

• Source code has been moved inside of src directory

• Pin cmd2 to version 0.9.4; newer versions break us badly

3.8. Changelog 45

http://tomcatmanager.readthedocs.io/en/stable/
https://github.com/tomcatmanager/tomcatmanager
http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html

tomcatmanager Documentation, Release 1.0.0

3.8.3 0.13.0 (2018-07-06)

Added

• In the interactive tomcat-manager tool, the history of previously executed commands is now persistent
across invocations of the program.

• Added common developer tasks to tasks.py. To run these tasks, use the invoke command provided by
pyinvoke.

• Tomcat 9.0.x officially supported. No material changes were required to gain this support, just validation via
the test suite.

• Type hinting added for enhanced developer productivity in most IDE’s

• Full support for Python 3.7

Changed

• ServerInfo.__init__() no longer accepts the result as a positional argument: it must be a keyword
argument.

Fixed

• Test suite now runs several orders of magnitude faster. The upstream cmd2 used pyparsing which was very slow.
cmd2 versions >= 0.9.0 use shlex to parse commands.

3.8.4 0.12.0 (2018-02-23)

Added

• You can now deploy applications via a context xml file. A new interactive command deploy context and
a new method deploy_servercontext() provide this capability.

Changed

• Better help messages in the interactive tomcat-manager tool

• deploy() has been replaced by three new methods: deploy_localwar(), deploy_serverwar(),
and deploy_servercontext().

• Commands which use an optional version parameter now use a -v option to specify the version

• Most commands now have -h/--help options

3.8.5 0.11.0 (2017-09-06)

Added

• New command line switches for tomcat-manager: --quiet, --echo, --status_to_stdout

• New setting status_prefix contains the string to emit prior to all status messages

• New class TomcatApplication

46 Chapter 3. Table of Contents

http://www.pyinvoke.org/
https://github.com/python-cmd2/cmd2
https://sourceforge.net/projects/pyparsing/

tomcatmanager Documentation, Release 1.0.0

Changed

• If we get an http redirect during TomcatManager.connect(), save the new url so we don’t have to re-
traverse the redirect on every command.

• Interactive list command now can filter by application state, and has two sort options.

• TomcatManager._user is now TomcatManager.user

• TomcatManager._url is now TomcatManager.url

• TomcatManager.list() now returns a list of TomcatApplication objects

• Renamed tm.codes to tm.status_codes to clarify the purpose

3.8.6 0.10.0 (2017-08-24)

Added

• CHANGELOG.rst

• documentation for interactive mode

• documentation for use from the shell command line

• read settings from a config file

• add config command which allows user to edit config file

• server shortcuts: save url, user, and password in config file

• which command to show which tomcat server you are connected to

• timeout setting for HTTP timeouts

• restart command as synonym for reload

• Add tox for testing against multiple versions of python

Changed

• status command now pretty prints the xml response

• TomcatManager.__init__ no long accepts paramemeters: use connect instead

• TomcatManager methods which act on apps (deploy, sessions, stop, etc.) now throw exceptions if
no path is specified. Previously they returned a response with r.ok == False

3.8.7 0.9.2 (2017-08-16)

Added

• new TomcatManager.connect() method

• lots more documentation

• pytest now runs doctests

3.8. Changelog 47

tomcatmanager Documentation, Release 1.0.0

Changed

• version numbers now provided by setuptools_scm

3.8.8 0.9.1 (2017-08-10)

Changed

• New release to practice packaging and distribution

3.8.9 0.9.0 (2017-08-10)

Added

• Converted from a single script to an installable python package

• Remove documentation for tomcat 6, which is no longer supported

• Add expire command

• Add vminro command

• Add sslconnectorciphers command

• Add threaddump command

• Add findleaks command

• Add status command

• Unit tests using pytest

• Support Tomcat parallel deployment

• Real documentation using Sphinx

• Packaged to PyPI

Changed

• Switch from getopt to argparse

• Use cmd2, if available, instead of cmd

• Switch from urllib to requests

Removed

• Drop support for Python 3.3

3.8.10 Changes in 2014 and 2015

• Remove methods deprecated in Python 3.4

• Add documentation to support Tomcat 7

48 Chapter 3. Table of Contents

tomcatmanager Documentation, Release 1.0.0

3.8.11 0.4 (2013-07-07)

Added

• Port to python 3

• New resources command

Removed

• Drop support for python 2

3.8.12 0.3 (2013-01-02)

Added

• Add code from private repo

3.8. Changelog 49

tomcatmanager Documentation, Release 1.0.0

50 Chapter 3. Table of Contents

Python Module Index

t
tomcatmanager, 26

51

tomcatmanager Documentation, Release 1.0.0

52 Python Module Index

Index

A
app_author (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

app_name (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

B
BOOLEAN_VALUES (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

C
config (tomcatmanager.interactive_tomcat_manager.InteractiveTomcatManager

attribute), 35
config_file (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 37

config_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 36

connect() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 27

connect_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 37

convert_to_boolean() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

D
default() (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

deploy_context() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

deploy_local() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

deploy_localwar() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 28

deploy_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 37

deploy_server() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

deploy_servercontext() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 28

deploy_serverwar() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 28

directory (tomcatmanager.models.TomcatApplication
attribute), 34

directory_and_version (tomcatman-
ager.models.TomcatApplication attribute),
34

do_config() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

do_connect() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

do_deploy() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

do_eof() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 40

do_exit() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_exit_code() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager

53

tomcatmanager Documentation, Release 1.0.0

method), 40
do_expire() (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_findleakers() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_help() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

do_license() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 40

do_list() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_quit() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_redeploy() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_reload() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_resources() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_restart() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_serverinfo() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_sessions() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_set() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

do_settings() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

do_show() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

do_sslconnectorciphers() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_start() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_status() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager

method), 39
do_stop() (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_threaddump() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_undeploy() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

do_version() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 40

do_vminfo() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

do_which() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

docmd() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

E
emptyline() (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

exit_code_epilog (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 40

exit_code_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 40

EXIT_CODES (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

exit_codes (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

expire() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 30

expire_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

F
find_leakers() (tomcatman-

ager.tomcat_manager.TomcatManager
method), 32

findleakers_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 39

54 Index

tomcatmanager Documentation, Release 1.0.0

H
help_config() (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

help_connect() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

help_deploy() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

help_exit_code() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 40

help_expire() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_findleakers() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

help_license() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 40

help_list() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

help_redeploy() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_reload() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_resources() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

help_restart() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_serverinfo() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

help_sessions() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_set() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

help_settings() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

help_show() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

help_sslconnectorciphers() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager

method), 39
help_start() (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_status() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

help_stop() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_threaddump() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

help_undeploy() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 38

help_version() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 40

help_vminfo() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 39

help_which() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

history_file (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 37

I
InteractiveTomcatManager (class in tomcatman-

ager.interactive_tomcat_manager), 35
is_connected (tomcatman-

ager.tomcat_manager.TomcatManager at-
tribute), 28

J
jvm_vendor (tomcatmanager.models.ServerInfo

attribute), 35
jvm_version (tomcatmanager.models.ServerInfo at-

tribute), 35

L
license_parser (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 40

list() (tomcatmanager.tomcat_manager.TomcatManager
method), 30

list_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

load_config() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 37

Index 55

tomcatmanager Documentation, Release 1.0.0

N
name (tomcatmanager.interactive_tomcat_manager.InteractiveTomcatManager

attribute), 40
number (tomcatmanager.interactive_tomcat_manager.InteractiveTomcatManager

attribute), 40

O
ok (tomcatmanager.models.TomcatManagerResponse at-

tribute), 32
os_architecture (tomcatman-

ager.models.ServerInfo attribute), 35
os_name (tomcatmanager.models.ServerInfo attribute),

35
os_version (tomcatmanager.models.ServerInfo

attribute), 35

P
parse() (tomcatmanager.models.TomcatApplication

method), 34
parse_args() (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

path (tomcatmanager.models.TomcatApplication at-
tribute), 34

perror() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

pfeedback() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

poutput() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 35

R
raise_for_status() (tomcatman-

ager.models.TomcatManagerResponse
method), 33

redeploy_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

reload() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 29

reload_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

resources() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 31

resources_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 39

response (tomcatman-
ager.models.TomcatManagerResponse at-
tribute), 33

restart_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

result (tomcatmanager.models.TomcatManagerResponse
attribute), 33

S
server_info() (tomcatman-

ager.tomcat_manager.TomcatManager
method), 30

ServerInfo (class in tomcatmanager.models), 35
serverinfo_parser (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 39

sessions (tomcatmanager.models.TomcatApplication
attribute), 34

sessions() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 30

sessions_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

settings_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 37

show_help_from() (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
method), 36

show_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 36

sort_by_path_by_version_by_state() (tom-
catmanager.models.TomcatApplication class
method), 34

sort_by_state_by_path_by_version() (tom-
catmanager.models.TomcatApplication class
method), 34

ssl_connector_ciphers() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 31

sslconnectorciphers_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 39

start() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 29

start_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

state (tomcatmanager.models.TomcatApplication at-
tribute), 34

56 Index

tomcatmanager Documentation, Release 1.0.0

status_code (tomcatman-
ager.models.TomcatManagerResponse at-
tribute), 33

status_message (tomcatman-
ager.models.TomcatManagerResponse at-
tribute), 33

status_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 39

status_prefix (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

status_to_stdout (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

status_xml() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 31

stop() (tomcatmanager.tomcat_manager.TomcatManager
method), 29

stop_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

T
thread_dump() (tomcatman-

ager.tomcat_manager.TomcatManager
method), 31

threaddump_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 39

timeout (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 35

tomcat_version (tomcatmanager.models.ServerInfo
attribute), 35

TomcatApplication (class in tomcatman-
ager.models), 34

TomcatError (class in tomcatmanager.models), 40
TomcatManager (class in tomcatman-

ager.tomcat_manager), 26
tomcatmanager (module), 26
TomcatManagerResponse (class in tomcatman-

ager.models), 32

U
undeploy() (tomcatman-

ager.tomcat_manager.TomcatManager
method), 29

undeploy_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 38

V
version (tomcatmanager.models.TomcatApplication

attribute), 34
version_parser (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 40

vm_info() (tomcatman-
ager.tomcat_manager.TomcatManager
method), 31

vminfo_parser (tomcatman-
ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 39

W
which_parser (tomcatman-

ager.interactive_tomcat_manager.InteractiveTomcatManager
attribute), 37

Index 57

	What Can It Do?
	System Requirements
	Table of Contents
	Installation
	Configure Tomcat
	Interactive Use
	Command Line
	Use from Python
	API Documentation
	Contributing
	Changelog

	Python Module Index
	Index

